Transmission line length formula:

the velocity of light in km/s

Now supposeĀ a transmission line parameter data is as follows

**R= 0.010 pu, X= 0.085 pu, B=0.176 pu.**

The base value of power and voltage is given as

${V}_{b}=230kV,{S}_{b}=100MVA$
Then the length is

Length = 97.33 km

Now we will calculate the resistance value:

**Inductance Value Calculation:**

**X= 0.085 pu**

${X}_{base}={R}_{base}\phantom{\rule{0ex}{0ex}}{X}_{base}=529\phantom{\rule{0ex}{0ex}}{X}_{actual}=529\times 0.085\phantom{\rule{0ex}{0ex}}=44.965\phantom{\rule{0ex}{0ex}}\phantom{\rule{0ex}{0ex}}{L}_{actual}=\frac{{X}_{actual}}{2\mathrm{\pi f}}\phantom{\rule{0ex}{0ex}}=\frac{44.965}{2\times 3.1416\times 60}\phantom{\rule{0ex}{0ex}}=0.1192\phantom{\rule{0ex}{0ex}}$

So L actual is 0.1192 Henry

Want to get the value in per kilometer, so we will divide this value by the total length of the transmissionĀ line(97.33 km)

${L}_{H/km}=\frac{0.1192}{97.33}\phantom{\rule{0ex}{0ex}}=1.225\times {10}^{\u20133}H/km$
Zero sequence Inductance will be

${L}_{0}=1.225\times {10}^{\u20133}\times 3\phantom{\rule{0ex}{0ex}}=3.676\times {10}^{\u20133}H/km$
Capacitor Value Calculation:

In order to find the value of capacitance, first, we have to calculate the value of susceptance which is the reciprocal of

*Related*